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Abstract 

David Specht 

HELIPAD DETECTION FROM SATELLITE IMAGERY USING 

CONVOLUTIONAL NEURAL NETWORK 

2020-2021 

Nidhal C. Bouaynaya 

Master of Science in Electrical and Computer Engineering 

 

  Location data about U.S. heliports is often inaccurate or nonexistent in the 

FAA’s databases, which leaves pilots and air ambulance operators with inaccurate 

information about where to find safe landing zones. In the 2018 FAA Reauthorization 

Act, Congress required the FAA to collect better information from the helicopter industry 

under part 157, which covers the construction, alteration, activation and deactivation of 

airports and heliports. At the same time, there is no requirement to report private helipads 

to the FAA when constructed or removed, and some public heliports do not have up to 

date records. This thesis proposes an autonomous system that can authenticate the 

coordinates in the FAA master database, as well as search for helipads in a designated 

large area. The proposed system is based on a convolutional neural network model that 

learns optimal helipad features from the data. We used the FAA’s 5010 database and 

others to construct a benchmark database of rotorcraft landing sites. The database 

consists of 9,324 aerial images, containing helipads, helistops, helidecks, and helicopter 

runways in rural and urban areas, as well as negative examples, such as rooftop buildings 

and fields. The dataset was then used to train various convolutional neural network 

models. The outperforming model, EfficientNet-b0, achieved nearly 95% accuracy on the 

validation set. We subsequently implemented a gradient-based explainability map 

depicting the most salient pixels that influenced the network’s prediction.  
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Chapter 1 

Background and Introduction 

I-A Problem Formulation and Motivation 

The FAA maintains a database reported helipads. So that pilots can identify 

possible landing locations, the dataset also contains other information besides the 

latitude/longitude coordinates for identification, including, in some cases, the information 

needed to request permission to land at these sites. Using the FAA Forms 7480&5010, 

lat/lon location coordinates are recorded by the helipad owners and using the same form 

alterations due to the removal or relocation of the helipad are also reported to the FAA. 

This helps to keep the dataset accurate as helipads close or relocate and as new ones 

become operational. However, reporting of these helipads for private use facilities is not 

required, primarily as they are updated for changed/modified information. Additionally, 

no ongoing audit process to ensure the accuracy of these coordinates currently exists. 

Consequently, there are numerous helipads across the U.S. that are not found in the 

database or that have not been updated over time as they have closed, and various entities 

have built new helipads in their place. As a result, the accuracy of the database can often 

be dubious a best as it is known to contain numerous errors and does not contain all 

possible helipads. This could cause an issue if a pilot flies to a set of coordinates that does 

not actually contain a helipad, which could result in a fuel exhaustion or other causal 

factors leading to and accident/incident from a wrong helipad landing. 

This thesis proposes a solution to the problem of helipad identification and 

accuracy validation via the form of an autonomous helipad identification system. With 
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the large availability of satellite imagery, it becomes possible to collect overhead imagery 

of desired coordinates. As helipads should be visible from this imagery, this problem now 

becomes a problem of identifying helipads in imagery. While not entirely accurate, many 

accurate coordinates can still be used to create a dataset of helipad imagery. This data can 

then be used to train a system to determine the existence of helipads at specified 

coordinates and expanded to allow users to search for a helipad within a specified region.  

  Simply by being able to verify the existence of a helipad at a given 

coordinate, it becomes possible to identify errors in other datasets, which can be noted to 

reduce the odds of pilots receiving incorrect information. This system can then be 

extended to be able to search for locations that contain helipads. This searching ability 

will allow for new coordinates to be proposed for the database. Depending on the 

implementation of the search algorithm, it may also be possible to correct the coordinates 

to improve their accuracy. 

A-1 What are Helipads? 

A helipad is a designated area that a helicopter is intended to land on and 

consisting of the Touch Down and LiftOff area (TLOF) of the landing area. The area 

around the TLOF, the Final Approach and TakeOff area (FATO) will be a solid surface 

clear of obstacles and may also be marked as part of the landing surface if it meets certain 

criteria defined in the FAA’s Advisory circular 150/5390-2C. The FAA’s Advisory 

Circular 150/5390-2C [1] defines standards for the construction of helipads. 

However, section 203 notes that these standards are not the law and act as 

recommendations for Prior Permission Required (PPR) facilities. Section 103 effectively 
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states that the minimum required facilities are a clear area with a wind cone. Despite this, 

many heliports follow these standards and use a variant of the markings listed in section 

215, which includes a white “H” marking in the middle the marked borders of the landing 

surface. Of note is that as per section 414, all hospital helipads will also include a cross 

around the “H”, and section 215 allows for PPR facilities to replace the “H” with another 

distinctive marking such as a logo. The TLOF is the area where a helipad is intended to 

land, and this area must always be load bearing. The FATO is the area around the TLOF 

where the helicopter should have room to maneuver. Section 208 notes that this surface 

does not always need to be load bearing, but the TLOF perimeter needs to be clearly 

marked in such a case. If the FATO is load bearing, then either the TLOF or FATO 

should be marked. Around the FATO and TLOF is the safety area which acts as a buffer. 

There does not need to be a solid surface for the safety area, however it should remain 

clear of obstacles that can interfere with the landing of the helicopter. The minimum size 

of these zones will be determined by the largest rotor diameter of the helicopter intended 

to land on the pad. Figure 1 shows the overall structure of a helipad. 
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Figure 1 

 

 Structure of a Helipad 

 

 

Helipads are also a part of some form of landing facility. There are 4 main types 

of facilities that will contain a helipad. The first type is a heliport, which will have 

services for helicopters, such as refueling and repairing. The second is a helistop, which 

is a landing area that offers no services, and allows for clearly marked landing areas 
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without the need to make a heliport. The third is an Emergency Helicopter Landing 

Facility and this is effectively a helistop that is only used in the event of an emergency. 

The last type is a helideck, which is a landing facility over the water, such as a boat or oil 

rig. Along with these facilities we will also consider parking pads and helicopter runways 

as a helipad for our purposes as they strongly imply that the area is intended for 

helicopter to land and takeoff at. 

A-2 Related Work in Helipad Identification 

There are two main types of approaches that can be taken for identifying helipads. 

A model-based approach can be developed, which involves having a human determine 

what features should be present at a helipad and then classifying images based on the 

presence of these features. The advantage of model-based approaches is that the reason 

for their process is explainable, and these systems can be made with very little data. Data-

driven algorithms involve the collection of large amounts of data, and then implementing 

an algorithm that will determine the features present at the helipad and will search images 

for these features. These systems can identify very complex patterns. However, a 

drawback to these algorithms is that they are very data hungry and require more 

computational resources. 

Most of the known algorithms that have attempted helipad detection have been 

model-based systems using computer vision approaches. [2] is able to identify a helipad 

using only the “H” marking. The Speeded-Up Robust Features algorithm is used to 

propose candidate matching points, and these points are further refined to feature 

descriptors. These points are then compared to points on an “H” template to determine 
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the similarity of the template and the ariel image. However most other methods first 

identify the circle around the “H” when identifying helipads. [3] starts by using a Hough 

transforms so that circles can be identified. Once a circle has been identified the area 

needed to be searched can be reduced to areas with the circle. To find the “H” marking 

the algorithm proposes 12 corners within the circle and if these corners meet 3 criteria, 

then these corners are likely the 12 corners on an “H”. Another approach explored in [4] 

starts with creating blobs of connected pixels. Using the Euler number, these blobs can be 

filtered by blobs that have 0 holes (like an “H”) or 1 hole (like a circle). The 1 opening 

group is further filtered by the blob’s eccentricity which measures the deviation of a 

curve from a circular curve. Then the center of the blobs from both groups are compared 

so that the center of a circle-like blob should be in the same place as the center of 0 

opening blob. To help ensure this is a helipad, the ratios of the shapes’ perimeter and area 

are checked against the expected ratios.  

These algorithms have some restrictions though. First, they have only been shown 

to work in simple environments and may not work in more complex environments. 

Secondly, these algorithms have limited effectiveness at further distances and angles. 

These issues were addressed in [5]. This algorithm starts with a system to reduce the 

complexity of the image by either identifying and removing empty areas (like the ocean) 

and breaking the image into sub-images. Then to identify an ellipse it finds the edges in 

the image and, chooses 3 edge points and attempts determine if the points are part of the 

same ellipse using a property of tangent lines of conics. As the 3 edge points may not be 

part of the same object, this process is repeated to increase the chances of the ellipse 

being found. Depending on the distance, the algorithm may then identify the center “H” 



www.manaraa.com

7 
 

based on the presence of 2 parallel lines connected by another line, or if the “H” is not 

clear the algorithm may use other shape descriptors to determine if the center is 

approximately an “H”. 

While these methods can identify helipads that are adhering to the recommended 

standard set in the FAA’s 150/5390-2C [1], neither the circle nor the “H” is a requirement 

even when these standards are adhered to. There are many possible cases, and a lot of 

scenarios would have to be considered to handle this detection task using a model-driven 

algorithm. However so long as examples of these helipads that do not adhere to the 

recommended standards can be found, they can then be used in a data-driven algorithm 

so the algorithm will learn to identify these features and identify other patterns of 

helipads that may be difficult for humans to describe. While to our knowledge no peer 

reviewed paper has been written on data-driven approaches to identify helipads, HelloPad 

[6] is a system that uses a data-driven algorithm to identify helipads within a specified 

region. The system uses a sliding window and a trained a ResNet model to identify if a 

helipad exists at a given location. For the test in Los Angeles the precision and recall of 

HelloPad reported were 67.2% and 90%, respectively. However, HelloPad collected 

negative examples from urban settings, and will likely not transfer well to all areas of the 

U.S. 

A-3 Explainable Deep Learning for Computer Vision 

 A key feature of a deep neural network is its ability to perform representation 

learning. Representation learning allows for the network to do feature learning, which 

allows for feature engineering to be done by a neural network. Previously feature 
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engineering was an important step in processing data for any algorithm handling complex 

data. For the case of a picture, features from the picture would need to be identified using 

techniques such as edge-detection, Speeded-Up Robust Features (SURF), or histogram of 

gradients. These techniques can be used to pull key features that are used to interpret the 

image using other techniques such as heuristics, traditional ML, or even shallow neural 

networks. However, feature engineering requires a lot of domain expertise to identify 

techniques appropriate for the data, and a lot of time is required to identify which 

techniques work best especially if multiple techniques need to be combined. A deep 

neural network allows the first layers to learn simple features, and deeper layers will 

combine these features to create more complex features. A network with enough depth 

can then learn complex features that are appropriate for the dataset. 

 Convolutional Neural Networks (CNNs) are designed to process multi-

dimensional arrays such as images. There are 3 layers typically used in CNNs: 

convolutional layers, pooling layers, and fully connected layers. Convolutional layers 

consist of filters consisting of learnable weights and are followed by an activation 

function to introduce non-linearities. By learning values for the weights, the 

convolutional layer is capable of learning appropriate filters to combine information from 

previous layers. Pooling layers are typically mixed in with convolutional layers. Pooling 

layers combine nearby features in an image by down-sampling. Down-sampling has the 

effect of creating invariance to small shifts, while keeping features in the same relative 

position. A typical down-sampling method may be keeping the max value, however other 

down-sampling methods may be used. Fully-connected layers are at the end of the 

network and will come after the convolutional and pooling layers. A fully-connected 
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layer will define multiple neurons, and each neuron will assign a weight to each input and 

combine the weighted inputs. This is typically followed by a non-linear activation 

function to add in non-linearities for each layer [7]. 

 With many of these layers stacked together, the network is capable of learning 

very complex functions, however the network is unable to explain the reasoning behind 

the function. These features may be beyond what humans have discovered, they may only 

be applicable for the exact data, or they could be remarkably similar to other methods 

humans use. Unfortunately, there is no easy way to explain the complex functions found 

by deep neural networks, and this gave rise to the field of explain-ability in ai. One of the 

more commonly used techniques for explainability are saliency maps. Saliency maps 

determine where high neuron activity occurred, these neuron activities can then be 

mapped to the image. Neuron activity is determined in part by the neuron’s activation 

signal, however different algorithms define the activity in different ways.  
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Chapter 2 

Dataset: Acquisition, Curation, and Labeling 

II-A Dataset Acquisition 

  We acquired 3 datasets through the FAA, 1 dataset from the IOWA DOT website, 

and another dataset from the Arcgis website. These datasets provide longitude and 

latitude of potential helipad landing locations. We used a google API to extract the 

corresponding images as well as to sample negative helipad locations. We noticed some 

discrepancy in the FAA datasets and had to manually curate the coordinates to ensure 

accuracy for our use cases. In the sequel of this chapter, we elaborate on each dataset, our 

curation approach, and our collection method for negative samples. 

A-1 Google Static Maps API 

The service for collecting the imagery was the Google statics maps API, which 

contains the imagery used in google earth. The service is accessed by sending an HTTP 

request with a query containing the desired parameters, which will be responded to with 

an image based on the parameters. The parameters used are center, zoom, size, and 

maptype. Center determines the coordinates that should be the center of the image. Zoom 

determines the distance a pixel will represent. Size determines the number of pixels in the 

image. Maptype determines which type of image should be retrieved (as Google maps 

contains road maps). For the purposes of this project, size was always set to the 

maximum value of 640x640, and the maptype was always satellite. Center was set to the 

desired coordinates to be sampled for the image and depending on the case can represent 

either a helipad location or a location where a helipad is not expected. This will be set to 
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the coordinates of the area to be sampled. Zoom was later fixed to 18 after a few tests. 

The most detailed images are at a zoom of 20, however a zoom of 18 was used instead. 

The difference between the two zooms can be seen below in Figure 2. A zoom of 18 was 

chosen as the larger area gives a larger margin of error for coordinates and will allow for 

sampling of larger areas using fewer API calls. There is a cost associated with making 

API calls beyond a certain limit, so efficiency of calls will become important when 

scaling up. 

 

Figure 2 

 

 Difference in Zoom Levels 

 

 

A-2 Helipad Datasets 

Areas with helipads are needed to create the positive set of the dataset. While 

areas can be randomly sampled and helipads in those areas labeled, this would be 
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incredibly inefficient. This is because there is an extremely low probability that a 

randomly sampled coordinate would have a helipad in it. As a result, datasets containing 

coordinates with helipads are required to collect helipad samples efficiently. Five 

different datasets were collected, annotated, and used to create a dataset of helipads.  

Two of these datasets came directly from FAA databases. The largest dataset 

came from the FAA’s 5010 dataset. This was filtered so that only landing areas 

appropriate for helicopters were present. However, the 5010 dataset is known to contain 

errors, which is part of the reason for the necessity of this study. To ensure the accuracy, 

these coordinates were manually annotated so that only coordinates where a helipad 

would be visible in the collected image was added to the train set. 6,333 coordinates were 

in the dataset, however after annotation, only 3,887 were considered to be definitely 

helipads. Later another large dataset was also provided, however a comparison was done 

with the first set, and noted a large overlap of locations. The dataset was filtered down to 

the unique 144 samples found in it. Then the dataset was annotated, and 93 coordinates 

were considered to be coordinates containing helipads. 

Later the FAA had also acquired a dataset from Lifeflight of Maine and provided 

this dataset as well. This dataset consists of 120 coordinates, which were reduce to 64 

usable samples. 

Lastly, two datasets were found from online sources. The first source is from a 

common dataset found online the contains coordinates of hospital helipads around the 

Los Angeles region. This dataset contained 170 coordinates, and after annotation, 169 of 

these coordinates were used. Data was also collected from the Iowa DOT’s website. The 
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website listed 126 locations, and 111 of these coordinates were considered to have 

helipads at them. 

A-3 Collection of Non-Helipad (Negative) Examples 

Next a negative set images is needed. As databases were needed to find helipads 

due to the extremely low probability of finding them during random sampling, the 

negative set was done using random sampling. It is noted that the probability of a helipad 

existing is non-zero, however a bit of noise is acceptable in the dataset and these helipads 

can later be identified and removed.  

As the goal is currently limited to identifying helipads in the U.S., the sampling 

was limited to an area such that the sampling region will include most of the mainland 

U.S. However, most of these samples were of forested areas and farmlands and contained 

very few urban areas. This could bias the network to expect urban areas to contain 

helipads. As this is not desired, more urban areas were also sampled so that the negative 

set would include more urban areas. Different urban areas also have different looks from 

overhead, so a few different areas were used. It is noted that urban areas will likely have 

a higher helipad density, and thus a helipad will be more likely to be found there. To 

lessen this risk, locations like Washington D.C. and New York City were chosen, as after 

a few helicopter accidents, owning a helipad in New York City has become more 

difficult, and as Washington D.C. is the capitol, there are increased airspace restrictions 

making travel by helicopter even more difficult. This causes these cities to have 

significantly less helipads than expected. 
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A-4 Issues Encountered During Data Acquisition 

On major issue is the reporting error of coordinates. It was decided that for the 

purposes of this experiment, a coordinate will be considered usable if there was a helipad 

present in the imagery taken of the area. This is to allow for a margin of error in reported 

coordinates. The margin is considered acceptable as it is believed to be reasonable for a 

pilot to identify a helipad within the given area, especially with some prior knowledge. 

However, there are a few cases of helipads that would be within a reasonable range of the 

coordinates, however they were not present within the sampled imagery. Figure 3: Non-

usable location with helipad nearby, shows a case where there is a helipad near the 

coordinates, however the helipad is outside the range that was annotated. 
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Figure 3 

 

Non-Usable Location with Helipad Nearby 

 

 

While the Google static maps service allows for the easy collection of overhead 

imagery for most coordinates, there are still a few issues with this service. One of these 

issues is that this service does not have imagery available at every zoom at every 

location. Typically, fewer coordinates have available imagery at higher values for zoom.  

Another issue with the service is collecting larger imagery. The maximum size of 

an image is limited to 640x640 pixels. This was the size used during the annotation 

process, and thus was the size collected. However, while this allows for larger errors in 

the coordinates, this does also cause an issue when trying to search for and localize 
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helipad locations. Ideally when searching an image for a 640x640 area that contains a 

helipad, that image would be larger than 640x640. While a search strategy can be done 

by probing areas within the search area, due to expected overlap, this is likely to be 

inefficient in terms of sampling and does not leave a good image to put the results on, as 

can be done easily on a larger image. 

Lastly, there is an issue of recency. The images used in google maps are not real 

time images, but rather imagery taken during a survey. This means that the overhead 

view that was sampled does not actually reflect the current state of the area. Google 

attempts to keep the images up to date such that the available imagery should be less than 

3 years old, however that is still a long period of time. This does limit the algorithm’s 

effectiveness for determining the accuracy of new entries of recent helipads, as the 

available imagery may come from a point before the helipad was constructed. 

II-B Dataset and Labeling 

B-1 Labelbox Labeling 

Labelbox is an online platform that assists in labeling data for image 

classification, object detection, and image segmentation [8]. Labelbox also supports 

production pipelines with APIs. 

Labelbox was used to manual create bounding boxes around helipads. Bounding 

box labeling allows us to consider a detection problem beyond a simple binary 

classification problem (i.e., “Is a helipad present in the image?” – yes or no). It is noted 

that during the initial labeling, some coordinates had helipads nearby, but no helipad in 

the image taken. This data was given a more refined look, however instead of labeling 
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helipad/non-helipad, the labeling was done on Labelbox by placing a box in the area 

around each present helipad as can be seen in Figure 4. The labeling was also done on 

larger images by using a collage which uses multiple images to create a single image 

showing a larger area while retaining the same zoom level. This process is further 

described in chapter 4. This form of labeling is common for object detection algorithms 

and will allow for the use of the metrics used by those algorithms to measure the 

accuracy. 

 

Figure 4 

 

Labeled Helipads 
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Without the labels in this dataset, the only metric that could be used to define the 

performance of the network would be the percent of correct predictions. This is a simple 

classification problem, so every prediction can either be correct or wrong. However, 

when localizing the object, there are multiple predictions A correct predication also relies 

on the Intersection over Union (IoU) of the prediction in the label. IoU is determined by 

dividing the area the boxes overlap by the area that both boxes occupy. If there is no 

overlap then IoU will be 0, and if the boxes are in the same place then IoU will be 1. If 

the IoU is above a threshold, then it can be said that the algorithm correctly predicted the 

existence of a helipad, and correctly determined where the helipad is. This can also be 

done for multiple helipads in an image.  

B-2 Pre-Processing/Data Augmentation 

In order to help train the network in a way to prevent memorization, data-

augmentation was done. First, in order to alter the dataset to be in the best format for 

using transfer learning, the images were down sampled to be 256x256 RGB images so 

that they would be around the input sizes the networks were trained on. ImageNet is a 

common testbench for architectures, and most architectures have weights trained for 

ImageNet. Using these weights should help to improve the model’s generalization and 

decrease overall training time. Values for the pixels for the models were also between 0 

and 1, and the images collected have values from 0-255. These values were divided by 

255 so that they would be in the same range as the image net values. These alterations 

should make the images more appropriate for possible architectures. 
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A few other augmentations were also performed to make memorizing the data 

more difficult. First let us go over the data again. The imagery is taken from satellites that 

are near the equator. As a result, most images have a bit of shear added because the 

imagery is not taken from directly overhead. The collected imagery should also always 

have North on the top of the image, and as we are always in the northern hemisphere, 

should also cause shadows to be on the South side. The coordinates used are also not 

exact, so it can be assumed that the helipad may not always be in the middle. As helipads 

can be facing in any direction, the image may be rotated to any angle and, with the 

exception of the shadows, should be indistinguishable from normal images. Because the 

helipads are not always centered, a random translation may also be applied to the image. 

The translation is limited to be up to 10% of the image to avoid helipads being shifted out 

of the image. As the imagery will have some shear values, shear was another variable 

added, and was restricted to be up to 5°. These alterations are intended to prevent the 

network from memorizing the image during training by memorizing the feature map 

specific to the image. 

II-C Benchmark Dataset 

After the above collection, labeling, and curation steps, a helipad identification 

benchmark dataset is created. The positive set contains 4,324 samples. Some areas are 

more represented than others, as some of the datasets used were specific to certain 

regions. However, the largest dataset making up over 80% of the dataset was from the 

FAA’s dataset spread over the United States and its territories and covers different types 

of landing areas including helicopter parking pads, helidecks, EHLFs, and heliports. 
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The negative set was created by randomly sampling 5,000 coordinates. 2,000 of 

these coordinates were from sampling the mainland United States and contains mostly 

woodland and other rural areas. As urban areas are different and are areas of particular 

interest, extra sampling was done in these urban areas. 3,000 images were then added to 

the dataset. These images came from San Jose, Washington D.C., New York City, and 

San Antonio.  

Together these form a dataset of 9,324 satellite images labeled as either helipad 

image or non-helipad. Figure 5 shows some of the images in the dataset. (a) shows some 

of the possible landing locations, including helistops, helidecks, and helicopter runways. 

(b) shows some of the randomly sampled imagery, with the 3 on the left being samples 

from the general U.S., and the 2 on the right side coming from the city specific sampling. 
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Figure 5 

 

Dataset Examples 
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Chapter 3 

Helipad Classification from Satellite Imagery 

III-A Convolutional Neural Networks 

The performance of four different networks on this dataset was evaluated. The 

four networks evaluated were ResNet101 [9], Inception-v3 [10], Xception [11], and 

EfficientNet-b0 [12]. These networks were chosen to represent as they represent a variety 

of types of architectures.  

A-1 ResNet101 

 ResNet101 proposed in [9] is a residual network with skip connections. Increasing 

the depth of a network by adding more can improve the accuracy of a deep neural 

network, however network performance will begin to suffer if too many layers are added. 

Skip connections provide an alternative path for learning that can bypass layers which 

can effectively alter the depth of the network. Doing so allows for the network to be able 

to act as if it had different depths, as different paths through the network correspond to 

different depths. This allows for a network to learn an appropriate depth for the dataset it 

is trained on. 

A-2 Inception-v3 

 Inception-v3, proposed in [10] is part of the family of inception networks. The 

inception family of networks make use of inception modules. The inception module is 

made up of parallel convolutional layers that make use of different filter sizes. Larger 

filters will learn features that cover a wider area, while smaller filters will allow for 
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learning features that cover smaller areas. Using multiple filter sizes, inception modules 

are able to learn features corresponding to different filter sizes and combine this 

information. 

A-3 Xception 

 Xception, proposed in [11], alters the inception-v3 architecture. Skip connections 

were added to the inception-v3 architecture while the inception modules from inception-

v3 were replaced with depthwise separable convolutions. Separable convolutional 

operations replace the filters using multiple dimensions with filters acting in fewer 

dimensions. When combined these smaller filters can act as a larger filter while using 

fewer parameters. Depthwise separable convolutions make use of 1×1×m filters to 

combine information from multiple channels into a single channel and are combined with 

information filters that do not combine information from multiple channels. 

A-4 EfficientNet-b0 

The EfficientNet family of architectures was proposed in [12] and includes eight 

different architectures (b0-b7). These architectures were designed to efficiently scale, and 

the higher number architectures correspond to the larger scaled networks. These networks 

are made up of sections that are organized and repeated with the larger variants 

containing more of these repeating sections.  

Table 1 shows some of the defining features for these architectures and can be 

used to get an idea of their differences. Note that while the image-net top 5-accuracy does 

imply that some architectures may be better than others, this is only for the image-net 

dataset and some architectures may perform better on certain datasets. 
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Table 1 

 

Summary of Differences Between Models 

 Skip 

connection 

Inception 

Module 

Trainable 

Parameters 

(millions) 

image-net top 

5-accuracy 

ResNet 101 Yes No 44.71 92.8% 

Inception-v3 No Yes 23.85 93.7% 

Xception Yes No 22.91 94.5% 

Efficienet-b0 Yes No 5.33 97.1% 

 

III-B Experimental Results of Convolutional Neural Networks 

K-fold validation was used when comparing the performance of these 

architectures with a value of 10 being used for K. K-fold validation splits the data into K 

equal subsets. K models will be trained, each using a unique subset for its validation set. 

Each model will train on all the subsets not used for its validation set. K-fold validation is 

typically used to ensure that the validation set is not an unfair representation of the 

dataset, and this is done by creating multiple validation sets and having every datapoint 

be in the validation set for 1 model. K-fold validation ensures that performance of the 

network is not based on a validation set made of easier examples, causing the network to 

appear to perform better than it would on data similar to the training set. 
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Each model was trained for up to 80 epochs, and early stopping was implemented 

so that the model will finish training if validation accuracy does not improve after 25 

epochs. An epoch is one pass through the entire dataset, meaning that the network can 

train on each datapoint up to 80 times. The average performance for each architecture is 

shown below in figures 6, 7, 8, and 9. 

 

Figure 6 

 

ResNet101 Results 
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Figure 7 

 

Inception-v3 Results 

 

 

 

Figure 8 

 

Xception Results 
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Figure 9 

 

EfficientNet-b0 Results 

 

 

It can be seen that EficientNet-b0 was able to reach the highest levels of 

validation accuracy peaking at just above 95% accuracy. However, the shape of the error 

is also important. There are 2 types of errors, false positives also known as type 1 errors 

where the network makes a wrongly makes a positive prediction, and false negatives also 

known as type 2 errors where the network wrongly makes a negative prediction. 

Accuracy can be a good metric to measure performance if the cost of these errors is 

equal, however these errors may have drastically different costs associated with them. 

Below Tables 2, 3, 4, and 5 show the results of these networks as a confusion matrix. 

Along with the total for each type of error, and overall network performance confusion 

matrices also show the true positives where the network correctly makes a positive 

prediction, and true negatives where the network correctly makes a negative prediction. It 

can be seen the EfficientNet-b0 has both the lowest number of false positives and lowest 



www.manaraa.com

28 
 

number of false negatives. As using EfficientNet-b0 will minimize both the occurrence of 

false positives and false negatives, it would have the lowest cost regardless of how the 

costs are weighted.  

 

Table 2 

 

ResNet101 Confusion Matrix 

 Prediction : No Helipad Prediction : Helipad 

Label : No Helipad 3768 (45%) 732 (9%) 

Label : Helipad 1826 (22%) 2069 (25)% 

 

Table 3 

 

Inception-v3 Confusion Matrix 

 Prediction : No Helipad Prediction : Helipad 

Label : No Helipad 3001 (36%) 1499 (18%) 

Label : Helipad 1763 (21%) 2132 (25%) 

 

Table 4 

 

Xception Confusion Matrix 

 Prediction : No Helipad Prediction : Helipad 

Label : No Helipad 3885 (46%) 615 (7%) 

Label : Helipad 269 (3%) 3626 (43%) 

 

 

 



www.manaraa.com

29 
 

Table 5 

 

EfficientNet-b0 Confusion Matrix 

 Prediction : No Helipad Prediction : Helipad 

Label : No Helipad 4301 (51%) 199 (2%) 

Label : Helipad 212 (3%) 3683 (44%) 

 

III-C Explainability for Convolutional Neural Networks 

However, while the performance on the dataset is high, this is not a guarantee that 

the network is working as intended. The images were taken at a distance where a lot of 

the area around the helipads were present and helipads are more likely to be found in near 

certain areas rather than others. As the negative sampling was restricted to certain 

regions, there is a chance that the network is making its predictions based on features that 

correlate with the presence of a helipad rather than the actual presence of a helipad. 

Explainability algorithms would allow for us to determine what areas the network uses 

when making a prediction and ensure that the network is using the presence of a helipad 

when making its predictions. 

One of the more common methods used in explainability is saliency maps, which 

show which neurons were important in the network making its prediction. As these 

neurons also correlate with specific regions of an image, these saliency maps can be 

stretched to fit over an input image. The algorithm used to generate a saliency map was 

grad-cam [13]. Grad-cam determines the importance of a neuron by combining the 

activation information of the neuron with the update information of the associated 

weights created from training the network on the image. Figures 10, 11, 12 show the 

grad-cam samples results of an image with a helipad where the network correctly 
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predicted that there was a helipad, a case referred to as a true positive. In these images the 

highest neuron activity corresponds to sections with a helipad or is very close to a 

helipad. This allows for confirmation that the network is predicting that the image 

contains a helipad based on the presence of a helipad rather the presence of nearby 

features such as structures or pavement that typically correlate with nearby helipads. The 

mapping generated will also allow for a human auditor to quickly identify where in the 

image a helipad is should such a step be necessary. Figure 13 shows the case where there 

is no helipad, but the network incorrectly guessed that there was a helipad, a case referred 

to as a false positive. Using grad-cam we can identify what area caused the network to 

make this prediction. In figure 13, we can see that the activation corresponds to an 

interesting feature where the roadway widens for a short segment. Noting that the 

network will fail in such a case, corrective measures can be taken so that the network will 

be more likely to learn that such areas are not helipads. More grad-cam examples can be 

seen in Appendix A. 
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Figure 10 

 

Grad-CAM TP Sample 1 

 

 

Figure 11 

 

Grad-CAM TP Sample 2 
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Figure 12 

 

Grad-CAM TP Sample 3 

 

 

Figure 13 

 

Grad-CAM FP Sample 
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Chapter 4 

Object Localization from Google Earth 

The system created thus far can determine if a given set of coordinates contains a 

helipad. This is useful as this can be used to identify possible errors in a dataset and can 

be used to check if proposed coordinates contain helipads. However, this algorithm is 

unable to search for helipads. Adding this feature would allow populated areas to be 

searched for helipads to add to the dataset. If the system can start searching for helipads, 

this also means that when a coordinate is flagged as being inaccurate, the system can then 

search the nearby area and correct coordinates that may be slightly off. Adding this 

feature will extend this system so that along with removing coordinates from the dataset, 

the system would be able to suggest new coordinates to add to the dataset. 

There are two options for collecting larger imagery for scanning regions using the 

Google static maps API. The first option would be to use a lower zoom value so that 

larger areas can be sampled. While this allows for sampling large areas using fewer API 

calls, there will be less detail for the input images to the network. The second option 

would be to sample the region multiple times and combine this information. While this 

method is not very sampling efficient the images will have the same detail as used by the 

network and would be appropriate to be implemented with the current system. 

IV-A Collage 

An efficient way to sample the region would be to apply a sliding window over 

the area, however, a mapping needs to be determined to map the pixels to lat/lon 

coordinates to do this efficiently. This mapping will allow for sampling the area 
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corresponding to the adjacent pixels. A mapping was found that maps pixels to meters 

using the latitude and the zoom level as parameters. This equation is shown in eq 1. This 

allows for measuring the real-world length of objects by counting the pixels. Common 

navigation equations can also be used to map meters to change in lat/lon as shown in eq 2 

and eq 3. These can be combined with eq 1 to determine the change in lat per pixel and 

change in lon per pixel as shown in eq 4 and eq 5, respectively. As the desired 

coordinates are at the center of the image, we can use eq 4 and eq 5 to determine the 

coordinates of each pixel in the image. Using this the appropriate next coordinate can be 

determined for a sliding window such that an image corresponding to the desired pixels 

can be sampled. This allows multiple adjacent images to be sampled and combined into 

what is referred to as a collage. 
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The collage creates a larger image around the desired coordinates using the 

sliding window. For the implementation, a radius can be set, and then the collage will 

create an image of (2{radius}+1)2 images. To cover as large areas as possible using as 

few API calls as possible, an image size of 640 x 640 is used for these collages as this is 

the maximum size. An overlap of 5% is in the sliding window for these collages to both 

remove the label on the bottom attached by google, and to give room for other algorithms 

to align the images should it be necessary. These parameters result in collages of size 

[(2{radius+1) × 608 + 32} x [(2{radius}+1) × 608 + 32] pixels.  

IV-B Sliding Window Approach 

To scan this area for helipads, another sliding window is applied. This sliding 

window will allow for the collage to be broken into sections appropriate for the 

algorithm. The advantage of using two sliding windows is that the area can be efficiently 

sampled using the first window and searched more thoroughly in the second sliding 

window. To reduce repetition of pixels during sampling, the first sliding window will 

search a wide area using an overlap of 5%. The second sliding can search a wide area 

using a larger overlap such as 50% to increase the repetition of pixels. In the case of 50% 

overlap in both the x and y directions, each pixel that is not on the edge of the area will 

be represented in four different images. Another note for this overlap is that each pixel 

will have one image where they are in the center half of the image in both the x and y 

directions. This guarantees that even if the helipad is on the edge for three images, it will 

be in the center for at least one image. Figure 14 shows an example where a helipad is 

cutoff in some images but becomes centered in the others. 
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. 

Figure 14 

 

Example of a Partially Cut-off Helipad 

 

Note. The 50% overlap ensures that a helipad will be nearly centered for 1 image, 

which is the case for the top right image. 

 

 

IV-C Experimental Results 

We applied this search strategy to a region of LA that is shown in Figure 15. LA 

was chosen as it is a city with a particularly high helipad density. However due to the 
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high helipad density this area was not chosen for the negative sampling, and the negative 

sampling done may not accurately represent this area. To fix this imbalance, the dataset 

was supplementing by taking the top half of the sampled region and using this half to 

supplement the training set.  

 

Figure 15 

 

Sampled LA Region 

 

 

The LA area under study was formed using an 11 x 11 collage and was broken up 

using a 20 x 20 sliding window to produce 400 smaller images. The 200 images making 
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up the top half of the collage will be used to supplement the training set. The bottom 200 

images were evaluated on and the results as a confusion matrix can be seen in Table 6, 

and a visual representation of the results can be seen in Figure 16. 

 

Table 6 

 

Confusion Matrix Results of Area Scan 

 Prediction : No Helipad Prediction : Helipad 

Label : No Helipad 78 46 

Label : Helipad 2 74 

 

 

Figure 16 

 

Results of the Helipad Search 

 

Note. Left shows the cells that are labeled as helipads, while the right shows the cells that 

were predicted as helipads. 

  

  



www.manaraa.com

39 
 

Chapter 5 

Conclusion and Future Works 

V-A Conclusion  

While further testing is needed, the proposed system shows capabilities to identify 

helipads in satellite imagery, determine what area the model used in identification, and 

search out additional helipads. 

 In terms of identification, EfficientNet does minimize both the number of false 

positives and number of false negatives. However, adjustments may still have to be made 

to further reduce one of these errors, even at the cost of increasing the other errors. A 

false positive will cause a false confirmation of a helipad, while a false negative will 

cause the false removal of a helipad. Currently the cost function for the network weighs 

these errors equally, however the cost associated with these errors are vastly different. 

Without human confirmation, adding in false positives to the dataset may result in a 

person attempting to land in an area without a helipad, which can pose a significant risk 

and causes an unnecessary loss of time and fuel when airborne. However, a false negative 

will result in helipads not being added to the dataset. Their exclusion will make finding 

the best helipads more difficult and may result in sub-optimal routing which can result in 

lost time during emergency scenarios. These costs should be weighted so that the costs 

are reflective of how much worse one error is compared to another, rather than being 

treated equally.  

 The grad-cam implementation allows for the determination of where a helipad is 

in an image. The use of grad-cam can be helpful for a couple of reasons. The first reason 
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it that grad-cam does verify that the network is focusing on the helipads in the satellite 

imagery. The second reason why grad-cam is helpful is the identification of why the 

network failed. As grad-cam can show where the network was focused when making its 

predictions, this allows for identifying where the network was looking for the false 

positive cases. This allows for the identification of cases where the network will fail and 

allows for corrective measures to be implemented. Grad-cam also highlights the areas of 

likely helipads, which would help a human auditor to quickly identify where the helipad 

is that the network found. 

 Lastly, the system has been extended to be able to search regions for helipads. 

Despite the CNN being able to achieve high levels of accuracy on its original dataset, it 

was unable to achieve nearly as high accuracy on the LA region dataset. However, it had 

very few false negatives meaning that most of the helipads were found. This would allow 

for the current system to work as a proposal system, and alterations to the dataset may 

further reduce this number. 

V-B Future Work 

 Some improvements can also be made to this system. The first option would be to 

increase the areas where negative sampling takes place. It was noted that randomly 

sampling the U.S. does not provide many urban areas. Four urban areas were added to the 

sampling pool to increase the representation of urban areas. However, these four areas are 

likely not representative of many cities in the U.S., This is a possible reason why the 

algorithm failed in Los Angeles even with supplemental data. Increasing the urban areas 

sampled may improve the algorithm’s ability to generalize to cities. 
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 Grad-cam can also be used to determine the locations of helipads with more 

precision. The saliency map generated by grad-cam can be used to coarsely locate the 

object in the image and doing so will allow for bounding boxes to be placed around the 

proposed region. The center of these bounding boxes can then be calculated, and the 

coordinates at the center can then be found. This can then also be applied to the region 

scanning approach to propose helipad locations. The first possible approach would be to 

propose a helipad location in an image and confirm that the helipad was also proposed in 

images overlapping the area. The second possible approach would be to combine the 

saliency maps. This is similar to the first approach; however, this will also make use of 

all importance values even if they are not near an area which was boxed. 
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Appendix 

Sample Grad-CAM Results 

 

Figure A1 

 

Grad-CAM TP sample 4 

 

 

Figure A2 

 

Grad-CAM TP Sample 5 
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Figure A3 

 

 Grad-CAM TP 6 

 

 

Figure A4 

 

 Grad-CAM TP 7 
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Figure A5 

 

 Grad-CAM TP 8 

 

 

Figure A6 

 

 Grad-CAM TP 9 
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Figure A7 

 

 Grad-CAM FP 2 

 

 

Figure A8 

 

 Grad-CAM FP 3 
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